If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+15v-48=0
a = 3; b = 15; c = -48;
Δ = b2-4ac
Δ = 152-4·3·(-48)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{89}}{2*3}=\frac{-15-3\sqrt{89}}{6} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{89}}{2*3}=\frac{-15+3\sqrt{89}}{6} $
| x+-5x=24 | | -q=16 | | a+(-a)=-a+a | | 8=13+y | | 14+6x=32 | | x=3,4 | | 2x-15-7x+24=36 | | (8x-3)2+7x+3=180 | | (3y)+y=16 | | 0.4x+0.8=4 | | 5x=25-5 | | 4x+32=-20 | | -14x=375 | | 2r^2+12r-14=0 | | 4x+36=-20 | | 10-5y+2=32 | | P(x)=0.85x-64 | | 7x+182=-14 | | x5=19 | | 14·n=182 | | 2x^2+14x=15x | | 9j+5j-11j=12 | | 2(x-12)^2=32 | | -55+9x=19+7x | | 96+5x=52+9x | | 14x+11=9x+61 | | y=1.5y | | -2(3x-4)=3x+26 | | b+0.15b=86.4 | | 5x-28=5 | | 4=21t^2+8t | | -3x+x=30 |